Neural Collaborative Embedding From Reviews for Recommendation
نویسندگان
چکیده
منابع مشابه
Collaborative Multi-Level Embedding Learning from Reviews for Rating Prediction
We investigate the problem of personalized reviewbased rating prediction which aims at predicting users’ ratings for items that they have not evaluated by using their historical reviews and ratings. Most of existing methods solve this problem by integrating topic model and latent factor model to learn interpretable user and items factors. However, these methods cannot utilize word local context...
متن کاملNeural Content-Collaborative Filtering for News Recommendation
Popular methods like collaborative filtering and content-based filtering have their own disadvantages. The former method requires a considerable amount of user data before making predictions, while the latter, suffers from over-specialization. In this work, we address both of these issues by coming up with a hybrid approach based on neural networks for news recommendation. The hybrid approach i...
متن کاملFrom Movie Reviews to Restaurants Recommendation
In this project, we first examine word vector representation of movie reviews and conduct sentiment analysis on this dataset. We compare word vectors learned from different language models and their performance on predicting review sentiment. With these exploratory results, we transfer the learning task to prediction of recommendation on another restaurant review dataset. The basic recommendati...
متن کاملQoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کاملUser Embedding for Scholarly Microblog Recommendation
Nowadays, many scholarly messages are posted on Chinese microblogs and more and more researchers tend to find scholarly information on microblogs. In order to exploit microblogging to benefit scientific research, we propose a scholarly microblog recommendation system in this study. It automatically collects and mines scholarly information from Chinese microblogs, and makes personalized recommen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2931357